Characterization of early steps in the poliovirus infection process: receptor-decorated liposomes induce conversion of the virus to membrane-anchored entry-intermediate particles.
نویسندگان
چکیده
The mechanism by which poliovirus infects the cell has been characterized by a combination of biochemical and structural studies, leading to a working model for cell entry. Upon receptor binding at physiological temperature, native virus (160S) undergoes a conformational change to a 135S particle from which VP4 and the N terminus of VP1 are externalized. These components interact with the membrane and are proposed to form a membrane pore. An additional conformational change in the particle is accompanied by release of the infectious viral RNA genome from the particle and its delivery, presumably through the membrane pore into the cytoplasm, leaving behind an empty 80S particle. In this report, we describe the generation of a receptor-decorated liposome system, comprising nickel-chelating nitrilotriacetic acid (NTA) liposomes and His-tagged poliovirus receptor, and its use in characterizing the early events in poliovirus infection. Receptor-decorated liposomes were able to capture virus and induce a temperature-dependent virus conversion to the 135S particle. Upon conversion, 135S particles became tethered to the liposome independently of receptor by a membrane interaction with the N terminus of VP1. Converted particles had lost VP4, which partitioned with the membrane. The development of a simple model membrane system provides a novel tool for studying poliovirus entry. The liposome system bridges the gap between previous studies using either soluble receptor or whole cells and offers a flexible template which can be extrapolated to electron microscopy experiments that analyze the structural biology of nonenveloped virus entry.
منابع مشابه
SUMOylation of Murine Leukemia Virus Capsid Protein Early in Infection
During infection, poliovirus binds to its receptor and undergoes conformational changes that ultimately result in release of the genomic RNA into the cell. The details of this process are poorly understood. Tuthill et al. (p. 172–180) report the development of a simple model system in which liposomes containing NTA head groups are used to capture His-tagged ectodomains of the poliovirus recepto...
متن کاملPoliovirus Particles do not Form in Preinfected Cells with Reovirus
Background and Aims: Inhibition of viral growth in coinfected cells with two different viruses has been described. This phenomenon known as viral interference can occur in several virus host systems such as interference of enterovirus infection on poliovirus vaccine strains. In this study we superinfected reovirus infected HeLa cells with poliovirus to determine if poliovirus can replicate in s...
متن کاملCholesterol Removal by Methyl- -Cyclodextrin Inhibits Poliovirus Entry
Upon binding to the poliovirus receptor (PVR), the poliovirus 160S particles undergo a conformational transition to generate 135S particles, which are believed to be intermediates in the virus entry process. The 135S particles interact with host cell membranes through exposure of the N termini of VP1 and the myristylated VP4 protein, and successful cytoplasmic delivery of the genomic RNA requir...
متن کاملEngraftment of plasma membrane vesicles into liposomes: A new method for designing of liposome-based vaccines
Objective(s):One of the major challenges in the field of vaccine design is choosing immunogenic antigens which can induce a proper immune response against complex targets like malignant cells or recondite diseases caused by protozoan parasites such as leishmaniasis. The aim of this study was to find a way to construct artificial liposome-based cells containing fragments of target’s cell membran...
متن کاملPicornavirus RNA is protected from cleavage by ribonuclease during virion uncoating and transfer across cellular and model membranes
Picornaviruses are non-enveloped RNA viruses that enter cells via receptor-mediated endocytosis. Because they lack an envelope, picornaviruses face the challenge of delivering their RNA genomes across the membrane of the endocytic vesicle into the cytoplasm to initiate infection. Currently, the mechanism of genome release and translocation across membranes remains poorly understood. Within the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 80 1 شماره
صفحات -
تاریخ انتشار 2006